2014. október 30., csütörtök

Legfontosabb kapnográfiás cikkek

Hallgatóink részéről felmerült az igény a legfontosabb cikkek összegyűjtésére. A következőkben témakörök szerinti bontásban, a teljesség igénye nélkül felsoroljuk a számunkra leginkább fontosnak tartott irodalmakat. A cikkek a megjelenés sorrendjébe lettek rendezve és a címekre kattintva a megfelelő Pubmed oldalra jutunk.

A kapnográfia alapjai
  1. Riley RL, Cournand A, and Donald KW. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs; methods. Journal of applied physiology 4: 102-120, 1951.
  2. Elam JO, Brown ES, and Ten Pas RH. Carbon dioxide homeostasis during anesthesia. I. Instrumentation. Anesthesiology 16: 876-885, 1955.
  3. Weingarten M. Respiratory monitoring of carbon dioxide and oxygen: a ten-year perspective. Journal of clinical monitoring 6: 217-225, 1990.
  4. Breen PH, Mazumdar B, and Skinner SC. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesthesia and analgesia 82: 368-373, 1996. 
  5. Arnold JH, Stenz RI, Thompson JE, and Arnold LW. Noninvasive determination of cardiac output using single breath CO2 analysis. Critical care medicine 24: 1701-1705, 1996.
  6. Thompson JE, and Jaffe MB. Capnographic waveforms in the mechanically ventilated patient. Respiratory care 50: 100-108; discussion 108-109, 2005.
  7. Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, and Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta anaesthesiologica Scandinavica 55: 597-606, 2011.
  8. Ortega R, Connor C, Kim S, Djang R, and Patel K. Monitoring ventilation with capnography. The New England journal of medicine 367: e27, 2012.
Főáramú és mellékáramú kapnográfia
  1. From RP, and Scamman FL. Ventilatory frequency influences accuracy of end-tidal CO2 measurements. Analysis of seven capnometers. Anesthesia and analgesia 67: 884-886, 1988.
  2. Pascucci RC, Schena JA, and Thompson JE. Comparison of a sidestream and mainstream capnometer in infants. Critical care medicine 17: 560-562, 1989.
  3. Breen PH, Isserles SA, Harrison BA, and Roizen MF. Simple computer measurement of pulmonary VCO2 per breath. J Appl Physiol (1985) 72: 2029-2035, 1992.
  4. Breen PH, Mazumdar B, and Skinner SC. Capnometer transport delay: measurement and clinical implications. Anesthesia and analgesia 78: 584-586, 1994.
  5. Ward KR, and Yealy DM. End-tidal carbon dioxide monitoring in emergency medicine, Part 2: Clinical applications. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 5: 637-646, 1998.
  6. Colman Y, and Krauss B. Microstream capnograpy technology: a new approach to an old problem. Journal of clinical monitoring and computing 15: 403-409, 1999.
  7. Kasuya Y, Akca O, Sessler DI, Ozaki M, and Komatsu R. Accuracy of postoperative end-tidal Pco2 measurements with mainstream and sidestream capnography in non-obese patients and in obese patients with and without obstructive sleep apnea. Anesthesiology 111: 609-615, 2009.
  8. Singh BS, Gilbert U, Singh S, and Govindaswami B. Sidestream microstream end tidal carbon dioxide measurements and blood gas correlations in neonatal intensive care unit. Pediatric pulmonology 48: 250-256, 2013.
Volumetrikus kapnográfia, holtterek
  1. Bohr, C.: Über die Lungenatmung. Skan Arch Physiol, 1891, 53, 236-238.
  2. Enghoff, H.: Volumen inefficax. Uppsala Laekareforen Forh, 1938, 44, 191-218.
  3. Fowler WS. Lung function studies; the respiratory dead space. The American journal of physiology 154: 405-416, 1948.
  4. Fletcher R, and Jonson B. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. British journal of anaesthesia 56: 109-119, 1984. 
  5. Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. The American review of respiratory disease 133: 679-685, 1986.
  6. Blanch L, Romero PV, and Lucangelo U. Volumetric capnography in the mechanically ventilated patient. Minerva Anestesiol 72: 577-585, 2006. 
  7.  Hedenstierna G, and Sandhagen B. Assessing dead space. A meaningful variable? Minerva Anestesiol 72: 521-528, 2006.
  8. Tusman G, Suarez-Sipmann F, Bohm SH, Pech T, Reissmann H, Meschino G, Scandurra A, and Hedenstierna G. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive care medicine 32: 1863-1871, 2006.
  9. Tusman G, Scandurra A, Bohm SH, Suarez-Sipmann F, and Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. Journal of clinical monitoring and computing 23: 197-206, 2009.
  10. Tusman G, Sipmann FS, and Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesthesia and analgesia 114: 866-874, 2012.
Kutatócsoport
  1. Babik B, Csorba Z, Czovek D, Mayr PN, Bogats G, and Petak F. Effects of respiratory mechanics on the capnogram phases: importance of dynamic compliance of the respiratory system. Critical care 16: R177, 2012.
  2. Babik B, Csorba Zs, Balogh Á, Szeti K, Tolnai J, Peták F. Kapnográfia lélegeztetett betegekben. Mindig nézzük, mindent látunk? Medicina Thoracalis (Budapest) LXVII:(2) pp. 78-98. (2014)
Nemsokára újra jelentkezem.
József


A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program – Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése országos program című kiemelt projekt keretében zajlott. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.